Approximation for Problems in Multi-user Information Theory Approximation for Problems in Multi-user Information Theory
نویسنده
چکیده
The main goal in network information theory is to identify fundamental limits of communication over networks, and design solutions which perform close to such limits. After several decades of effort, many important problems still do not have a characterization of achievable performance in terms of a finite dimensional description. Given this discouraging state of affairs, a natural question to ask is whether there are systematic approaches to make progress on these open questions. Recently, there has been significant progress on several open questions by seeking a (provably) approximate characterization for these open questions. The main goal of approximation in network information theory is to obtain a universal approximation gap between the achievable and the optimal performance. This approach consists of four ingredients: simplify the model, obtain optimal solution for the simplified model, translate this optimal scheme and outer bounds back to the original model, and finally bound the gap between what can be achieved using the obtained technique and the outer bound. Using such an approach, recent progress has been made in several problems such as the Gaussian interference channel, Gaussian relay networks, etc. In this thesis, we demonstrate that this approach is not only successful in problems of transmission over noisy networks, but gives the first approximation for a network data compression problem. We use this methodology to (approximately) resolve problems that have been open for several decades. Not only do we give theoretical characterization, but we also develop new coding schemes that are required to satisfy this approximate optimality property. These ideas could give insights into efficient design of future network communication systems. This thesis is split into two main parts. The first part deals with the approximation in lossy network data compression. Here, a lossy data compression problem is approximated by a lossless counterpart problem, where all the bits in the binary expansion of the source above the required distortion have to be losslessly delivered to the destination. In particular, we study the multiple description (MD) problem, based on the multi-level diversity (MLD) coding problem. The symmetric version of the MLD problem is well-studied, and we can directly use it to approximate the symmetric MD problem. We formulate the asymmetric multi-level diversity problem, and solve it for three-description
منابع مشابه
Soft Computing-based New Interval-valued Pythagorean Triangular Fuzzy Multi-criteria Group Assessment Method without Aggregation: Application to a Transport Projects Appraisal
In this paper, an interval-valued Pythagorean triangular fuzzy number (IVPTFN) as a useful tool to handle decision-making problems with vague quantities is defined. Then, their operational laws are developed. By introducing a novel method of making a decision on the concept of possibility theory, a multi-attribute group decision-making (MAGDM) problem is considered, in which the attribute value...
متن کاملMulti-objective Modeling Based on Competition Airlines Cooperation by Game Theory and Sustainable Development Approach
In each time period, the demand of passengers for each route are finite and airlines compete for earning more profits. The complex competition among airlines causes problems, such as complicating flight planning and increasing empty seats for some routes. These problems increase air pollution and fuel consumption. To solve these problems, this research studies the cooperation of the airlines wi...
متن کاملSemi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملAnalysis of User Interface Environment in Scientific Databases According to the Viewpoints of Postgraduate Students Applying Dervin's Sense-Making Theory
Abstract Background and purpose: The purpose of this study was to analyze the user interface environment of some databases (Science Direct, Springer, Clinical Key, and Wiley online library) from the perspective of users applying Dervin's sense-making theory. Materials and methods: A cross-sectional descriptive study was conducted in 100 PhD students and research-based PhD students in Mazandar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010